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Lecture 11 Summary 

Phys 404 

 

 We consider the spectrum of electromagnetic waves that emerge from a hollow box with walls 

at temperature  .  This problem has relevance to the cosmic microwave background spectrum, and the 

calibration of infrared thermometers. 

 Consider a single mode of a simple one-dimensional electromagnetic resonator.  Imagine two 

parallel perfect-metal walls separated by a distance  .  The fundamental mode of oscillation of the 

electromagnetic field will have a wavelength that is twice the distance between the plates to satisfy the 

boundary condition that the tangential electric field goes to zero at each wall.  Hence     , and the 

energy of this mode, according to Einstein is   
  

 
   , with   

  

 
 (This is where quantum 

mechanics sneaks into the argument).  The unit of energy in the electromagnetic field, according to 

quantum mechanics, is called the “photon.”  This particular mode can be occupied by either 0, 1, 2, 3, … 

photons, the quantum of electromagnetic energy.  Note that photon occupation of a mode is a separate 

issue from the energy of the mode.  Photons are what we will later call “Bosons,” and any number of 

them can occupy the same mode.  Einstein introduced the quantized energy value of the photon to 

explain the photoelectric effect.  The higher the photon occupation number, the larger the amplitude of 

vibration of this particular mode.  A classical electromagnetic wave would be recovered in the limit of 

large photon occupation number.  The energy states of the mode now correspond to a ladder of 

energies      , with              This bears strong resemblance to the energy states of the 

quantum harmonic oscillator, except for the absence of the zero-point energy.  Hence it is natural to 

consider the occupation of electromagnetic modes in terms of the energy states of a harmonic 

oscillator, as is done in the theory of quantum electrodynamics. 

 With this photon picture of the electromagnetic mode, we can now calculate the thermal 

average photon number in the mode by assuming the mode is in equilibrium with a reservoir at 

temperature  .  Start with the partition function          
 , where       , and              

The partition function was calculated in K+K Chapter 3, problem 3 for a harmonic oscillator:   
 

        .  The thermal average photon number is     
 

 
          

  
 

       
, after some 

manipulation.  The red curve below shows <s> as a function of     , while the blue (upper) curve 

simply shows      (which is the classical prediction for the occupation of this mode).  The two lines are 

parallel at large temperatures, but the photon theory shows that the thermal average photon number is 

exponentially suppressed at low temperatures, and this key result allowed Planck to fit the black body 

radiation spectrum with his newly invented quantum theory in 1900. 
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The thermal average energy in this single mode is           
  

       
. 

 Now consider electromagnetic waves in a three-dimensional empty cube of side L with perfect-

metal walls.  Solutions to Maxwell’s equations have eigen-frequencies of the form   
   

 
, where 

     
    

    
 , and           ,           ,             There are an infinite number of 

modes available and each of these modes can have             photons occupying it.  We have 

already calculated the thermal average photon number in each mode above.  Now calculate the total 

energy of photons in the box by adding up the energy in each of the infinite number of modes: 

          
   

         .  Remember that   represents a list of three quantum numbers, so that 

this is a triple sum.  However the summand only depends on the magnitude of  , so we can convert the 

triple sum to a single integral on  .  However we have to count the states properly in this conversion.  

The modes can be described as dots in three-dimensional “       ”, spanned by the          axes.  

Many high-  modes will be occupied, so that the         will be so dense with points that we can 

treat it as a continuous medium.  All the points with nearly the same value of   will lie on or very near 

the surface of an octant.  As this spherical surface expands out by a distance   , it will include 
 

 
         more points (because each point takes up a volume of 1 in        ).  Thus the triple sum 

becomes    
  

 
 

   

        

 

 
    , where the factor of 2 comes from the two independent 

polarization states that each photon can have.  The result of the integral is     
    

      , where      

is the volume of the box.  The dependence of the energy density of the photon gas on the fourth power 

of temperature of the reservoir is the Stefan-Boltzmann law. 

Looking at the integrand for     above, we can find how the energy density      is distributed 

over frequency.  This is the famous Planck blackbody radiation law:      
        

       
, which gives the 

energy per unit volume per unit frequency in the electromagnetic fields.  The numerator of this 

expression is basically the classical prediction (Rayleigh-Jeans law), and leads to the “ultraviolet 

catastrophe” in the limit of large frequency.  The exponential in the denominator suppresses the energy 

density at high frequency (due to the quantized nature of the photon modes discussed above), avoids 

the catastrophe, and gives excellent agreement with experimental data on blackbody radiators, 

including the cosmic microwave background radiation spectrum. 
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http://en.wikipedia.org/wiki/Cosmic_microwave_background_radiation

